
No Signal to Rule Them All: A Systematic
Analysis of In-Network Congestion Signals
Sarah McClure #

UC Berkeley, USA

Nandita Dukkipati
Google, USA

Sylvia Ratnasamy
UC Berkeley, USA

Scott Shenker
UC Berkeley, USA
ICSI, USA

Abstract
In this paper, we address the following question: what in-network signals should a network provide to
congestion control algorithms? To answer this guiding question, we use prior work to automatically
generate congestion control algorithms optimized for a given performance objective and set of in-
network congestion signals. We then make observations about the relative value of these congestion
signals across a range of performance objectives. Our analysis yields a surprising central finding: for
the average case, sophisticated In-Network Telemetry (INT) offers minimal performance benefits over
traditional end-to-end (E2E) signals, with performance typically within 3%. We also find no single
“best” INT signal, but rather a clear trade-off that manifests in many scenarios: link-based signals
often excel at controlling delay, while queue-based signals are better for maximizing throughput. To
make these findings concrete, we validate them by examining the extent to which in-network signals
improve the performance of the BBR congestion control algorithm.

2012 ACM Subject Classification Networks → Network protocol design; Networks → Signaling
protocols; Networks → Transport protocols; Networks → Network control algorithms; Networks →
Network simulations; Networks → Network performance modeling; Networks → Network performance
analysis

Keywords and phrases Congestion control, in-network telemetry

Digital Object Identifier 10.4230/OASIcs.NINeS.2026.12

Supplementary Material Software: https://github.com/smcclure20/ns3-signal-eval
Software: https://github.com/smcclure20/rplus

1 Introduction

Because it plays such an important role in the resulting performance of individual flows,
congestion control is a mainstay of the networking literature, with new congestion control
algorithms appearing in almost every networking conference. But even if we look only at
widely deployed congestion control algorithms, rather than including research proposals, the
field has made impressive progress over the years. There have been several generations of
widely deployed congestion control algorithms, starting with loss-based congestion control
algorithms that focused on the WAN [20, 41, 37] which were followed by congestion control
algorithms – most notably BBR [11] – that utilized delay and throughput rather than loss
as the primary congestion signal. When datacenters became prevalent, with their short
RTTs and emphasis on tail latencies, a new generation of congestion control algorithms was
deployed, starting with DCTCP [5] and leading to more recent algorithms [31, 25, 29, 49].

© Sarah McClure, Nandita Dukkipati, Sylvia Ratnasamy and Scott Shenker;
licensed under Creative Commons License CC-BY 4.0

1st New Ideas in Networked Systems (NINeS 2026).
Editors: Katerina J. Argyraki and Aurojit Panda; Article No. 12; pp. 12:1–12:33

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sarah@cs.berkeley.edu
https://orcid.org/0000-0001-8384-8813
https://orcid.org/0000-0002-0524-9425
https://orcid.org/0000-0002-1357-7533
https://doi.org/10.4230/OASIcs.NINeS.2026.12
https://github.com/smcclure20/ns3-signal-eval
https://github.com/smcclure20/rplus
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


12:2 No Signal to Rule Them All

One constant throughout this ongoing evolution was that widely deployed congestion
control algorithms were mostly based on end-to-end (E2E) signals, such as RTT, packet
drops, and observed throughput. The one obvious exception to the end-to-end nature of the
signals used by these congestion control algorithms was ECN, whose origins date back to
DECBit [35]. In the WAN context, ECN provided limited value since it was not universally
adopted. Thus, congestion control algorithms had to expect a mixture of ECN-enabled and
ECN-incapable routers along the path. But in the datacenter context, because uniform ECN
adoption could be achieved, DCTCP leveraged ECN’s flexibility to provide a richer form of
feedback from individual routers.

We have recently entered a new era in datacenter congestion control, since a much
richer set of router-based signals is becoming available from individual routers. These newly
emerging signals, which are referred to as in-network telemetry (INT), are collected at routers
and made available to hosts via fields in packet headers, as documented in the CSIG Internet
Draft [36]. There are many possible signals that could be generated at individual routers,
but we must be careful about which ones the field eventually adopts, for three reasons. First,
not all INT signals can be reported to a congestion control algorithm, because header real
estate is scarce. Second, the mechanisms for collecting these signals operate at packet speeds
and therefore must be embedded in router hardware/firmware. Thus, vendors must make
a choice about which to support rather than enabling each customer to choose whatever
signals they want. Lastly, we expect that some INT signals will be better than others, in the
sense of leading to better datacenter congestion control algorithms. Thus, we must make a
choice about INT signals, and that choice matters.

To provide some guidance on this choice, in this paper we address the question: what INT
signals would be most valuable for datacenter congestion control algorithms (CCAs)? But to
answer this question fully and fundamentally, we must take a general approach that does
not start with limiting assumptions about the particular context in which these INT signals
will be used. More specifically, we do not want to fix on a given CCA, or on a particular
performance goal, or on a given workload. Instead, we want to understand how the choice of
INT signals might be impacted by these various factors and whether there are any general
lessons to be learned. Such lessons will allow us to ask what INT signals are best for CCAs
that are designed from the ground up to leverage those signals, which is the question we care
about in the long-term.

Of course, others have looked at how to leverage INT signals. In particular, as we discuss
in §8, prior work has explored co-designing INT and CCAs for specific performance metrics
or workloads (e.g., HPCC [29]), or optimizing a specific CCA to use a specific INT signal
[42], but we are unaware of work that attempts to answer the question as generally as we
tried to do.

This generality poses a methodological problem, because the value of a particular INT
signal is fundamentally dependent on how well a CCA utilizes it. Ideally, we would evaluate
a set of INT signals S based on the performance of a CCA that was optimally designed to
leverage that set of INT signals. And, given our long experience with congestion control
algorithms, we expect that the “optimal” CCA will depend on both the set of INT signals
and the desired performance objectives (and in what follows we assume that these objectives
are some function of the resulting throughput and delay). But we have no known methods
for generating the optimal CCAs for a specific set of signals and performance objectives.

As a pragmatic way out of this methodological bind, we propose to leverage prior work
on learned congestion control algorithms. These learning-based techniques search the space
of congestion control algorithms that have access to a set of INT signals, S, during training



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:3

and return the optimally performing algorithm discovered during the search process. Our
proposal is to use this best learned algorithm – denoted lCCA(S) – as a stand-in for the
optimal datacenter congestion control algorithm that uses S. This turns the unattainable
ideal of optimality into the tangible result of learning, which we think will suffice for our
efforts.

While one might leverage any learning-based approach, for reasons we discuss in §3, we
build on one of the earliest approaches to learning-based congestion control – Remy [43]
– and add several key modifications to improve its search capabilities in our context. We
make no claim that our learning technique, which we call R+, is the best, but we find
that the algorithms it produces – the lCCAs – generally match or outperform both the
state-of-the-art hand-crafted CCAs and other learned CCAs that we obtaining from other
learning algorithms. Thus, our research approach is to take, for any given set of INT signals
S, the resulting lCCA(S) as a “tractable approximation of the optimal” [45] and use it to
evaluate the benefit of the set of signals S.

Note that the resulting lCCAs are not candidates for deployment. We recognize that
learned CCAs often do not generalize beyond their training environment, and the world
of datacenters environments is far broader than what our test cases encompass. But we
are comparing lCCAs within the same environments that we use for training, so we believe
that the basic comparisons will still provide insights, even if the resulting lCCAs may not
sufficiently generalize to all settings they might encounter in real deployments.

The bulk of this paper is devoted to a series of experiments comparing the performance
of the resulting lCCA(S) as we vary the set of signals and the performance objectives,
over a range of datacenter network scenarios. For the range of network configurations and
performance objectives that we investigate, our core findings are twofold:

(1) CCAs that exploit INT signals see little average improvement over those that use just
the E2E signals of delay, loss, sending rate, and receiving rate. More specifically, the best
performance with INT is on average within 3% of that achieved using only E2E signals.

(2) There is no clear “winner” amongst the set of INT signals. On average, the performance
they achieve is within 1% of each other.

These core findings were a surprise to us, and hence the majority of this paper is about
understanding them more deeply. Exploring the first finding leads to the following underlying
results:

1a Delay and send/receive rates suffice. We find that finding (1) would not hold if loss
was the primary E2E congestion signal (as was the case in the past); for example, the
best INT dominates loss alone by 30% on average, but other E2E signals such as RTT
and send/receive rates close the gap.

1b While we typically average over a range of network scenarios, the specifics of
a network scenario occasionally matters to a modest degree. Finding (1) holds
in part because we are averaging across network scenarios, but there are specific scenarios
where INT offers modest benefits. For instance, for one of our performance objectives (that
values delay and throughput roughly equally), INT offers up to 7% higher performance in
up to 11% of scenarios. These gains can be relevant for performance-sensitive datacenter
contexts with specific operating regimes.

1c INT typically helps the most in extreme network scenarios. Investigating when
INT wins, we find that these specific scenarios are typically characterized by having
extreme (high or low) levels of load or numbers of senders. Our hypothesis is that, in
such cases, the E2E signals for an individual flow capture only a partial view of router
conditions, while INT signals always capture a more “global” view of router performance,

NINeS 2026



12:4 No Signal to Rule Them All

and this gives INT an edge. Validating this hypothesis remains an open question, which
we hope to return to in future work.

1d In these extreme scenarios, INT is a better “multitasker”. Our investigation
of why INT wins in the above scenarios reveals that, when considering performance
objectives that optimize for both throughput and delay but prioritize one over the other
(e.g., weighting delay as twice as important than throughput), INT is comparable to
E2E signals in optimizing the primary metric but can do a better job on optimizing
the secondary metric. This may also explain why the benefits due to INT are relatively
modest, since it only wins on the secondary metric.

Exploring finding (2) leads to the following underlying results:
2a Different INT signals result in different tradeoffs between performance metrics.

We find that within the extreme scenarios from above, queue-based INT metrics result
in CCAs that maintain high throughput for a tradeoff of extra delay, while link-based
metrics (e.g., link utilization) result in very low delay in many cases.

2b While different INT signals perform similarly on average, there are specific
scenarios where an INT signal dominates. Specifically, in these extreme scenarios,
we find that queue-based INT signals shine in scenarios with very few senders. Meanwhile,
link-based INT signals help in scenarios with long flows and many senders, but do not do
well with very high numbers of senders.

We show that these results are robust across several different network topologies, traffic
matrices, and specific forms of signals. Of course, the scope of our evaluation is not exhaustive
or representative of all valid use cases. Thus, we encourage the application of our evaluation
framework to other scenarios and hope to explore the same in future work.

2 Approach

This paper presents a large collection of simulation results, but they are all tied together by
a single intellectual approach, which we now describe.

To quantify the performance of a CCA we must specify three important factors under
which it operates. The first is the range of network characteristics (e.g., link rates, delays,
buffer sizes) and workloads (e.g., number and nature of flows) under which the CCA is
expected to operate. We refer to this as the range of network scenarios, which we denote by
a set N . Second, we must specify what INT and end-to-end signals are available, which we
describe by a set S. Finally, we must specify what performance objective is used to evaluate
the CCA. Following the NUM paradigm [23], we define our objective as the average of a
per-flow utility function u, denoted Pu.

For a given network scenario N and utility function Pu, we are interested in what in-
network telemetry signals S a network should offer. Hence, we do not focus on what a
specific CCA would do with such signals but rather what is the best any CCA could do. If
we could determine the optimal CCA for any given N , S, and Pu, then we could address
the above question by simply evaluating the optimal CCA for different candidate S. For
example, we could simulate the optimal CCA for each S over different network scenarios
in N and pick the S that yields the maximum Pu. However, there is currently no known
solution that searches the CCA design space to find the optimal CCA and hence we must
resort to practical approximations of the optimal.

As discussed in the previous section, our strategy will be to leverage learning-based
approaches to generate a CCA that we use as our approximation of the optimal. To that end,
we define lCCA(N, S, Pu) to be the learned CCA that, given the set of signals S, optimizes



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:5

Network Config, N R+ l CCA(N,S,P) Score

Signal Set, S

Utility Function, Pu

Signal Space Actions
range a
range b

…

(x, y, z)
…

Generator l CCA

ns-3

Evaluator

Figure 1 An overview of our signal evaluation framework. The network configuration, the utility
function, and the signal set are configurable parameters for R+ while the score and lCCA(N, S, P )
are artifacts produced by the process.

the performance objective Pu when averaged over a set of network scenarios N . Thus, we
are interested in, for a given range of networks N and performance objective Pu, how well
lCCA(N, S, Pu) does as S varies.

With lCCA as our approximation of an optimal CCA, we now provide an overview of our
evaluation process, leaving a detailed description to §4. Our evaluation uses a learning-based
CCA generator and a network simulator. In our work, we used an improved version of
Remy [43], which we call R+, to generate our learned CCAs, and ns-3 [2] as our network
simulator to evaluate lCCAs. We believe our process could easily be extended to other CCA
generators and simulators.

The process of evaluating a signal set S consists of three main steps as shown in Figure 1:
(1) Generating an lCCA using R+. First, we provide R+ with a network configuration
representing the range of network scenarios the CCA should consider (N) and the set of
signals it is able to consider (S). We also set the utility function that R+ uses to evaluate and
optimize candidate algorithms (Pu). Given these parameters, R+ generates lCCA(N, S, Pu).
(2) Validating lCCA using simulation. CCA generator tools such as Remy typically rely
on a high-level network model to evaluate the algorithms and rules they generate. Network
simulators such as ns-3 typically offer greater realism since they can easily create complex
topologies and model lower level effects such as the details of TCP sockets. Thus, as an
additional validation step, we take the lCCA generated in the previous step and evaluate it
in ns-3 [2], recording the overall performance Pu (or “score”) that the lCCA achieves.
(3) Picking lCCA. We repeat the above steps for multiple checkpoints of training and
finally select the lCCA that receives the best score (i.e., best Pu) in simulation as our
approximation of the optimal CCA for a given N , S, and Pu.

We repeat the above steps for different sets of S (including no in-network signals) and
compare their relative performance to pick the best S. Thus, for a given utility and network
scenario, we can determine the best utility score that can be achieved for different signals,
and hence which signals were the most useful. We conduct this process for multiple utilities
(Pu) and different network scenarios (N). Of course, there are an unbounded number of
possible configurations, so we only pick a reasonable initial set (§4).

3 Finding lCCA

To approximate the optimal CCA, we turn to prior work in automating the development of
congestion control. While there are many works in the space of automated CCA development
that may be applicable ([46, 3, 21] for a sampling), we build on Remy [43]. In this section,
we start with a brief overview of Remy and how we extended it to create R+, and then
discuss our rationale for building on Remy.

NINeS 2026



12:6 No Signal to Rule Them All

3.1 Remy and R+
We review baseline Remy [43] using the notation from §2. Remy trains CCAs to maximize
performance according to a utility function, Pu. Given a range of network configuration
parameters N (e.g., bottleneck rate, RTT) from which to sample, Remy produces a CCA in
the form of a match-action table of “rules”. The rules in the generated CCA cover a space
of signal values and map to an action for the CCA to take; e.g., change the cwnd and the
pacing rate based on observed RTT value. Remy has a notion of generations that guide the
degree of optimization that the tool attempts. In each generation, Remy picks a random
sample of networks within the parameters of a provided configuration. Then, starting with
the rules from the previous generation, Remy intelligently steps through each rule, testing
variants of a rule by evaluating whether they lead to better performance as measured by Pu.
We provide a brief summary of Remy in Appendix A.1.

For our work, we made a few small, but important, modifications to Remy. These
primarily involved increasing the network configuration sample size (which we found was
necessary for consistent results), adding support for in-network signals, and extending the
action types that Remy considers. The latter was particularly important to achieve better
performance. Specifically, we introduced actions that allow the pacing rate at the sender
to be a function of other observed performance metrics, rather than being directly set. We
discuss these changes in more detail in Appendix A.2. Our evaluation showed that these
changes improved the performance of our lCCAs by up to 3x in some evaluation scenarios
(A.2). To avoid confusion, we use R+ to refer to Remy with our extensions.

3.2 Why Remy (and R+)?
We chose to build on Remy because it has a few desirable properties: (i) its capabilities and
limitations are well-studied [40, 45, 3], (ii) it produces interpretable artifacts, and (iii) it
could be easily extended/improved for our use case, as we did with R+. We acknowledge
that even with its improvements over the original, Remy (or R+) may not be the ideal search
algorithm for finding optimal congestion control algorithms, but we believe it to be the
best prior work available which produces an interpretable CCA optimized for average-case
behavior. Importantly, prior work has shown that Remy serves as a “tractable approximation
of the optimal” for a given utility function [45] – the exact property we need. Further, since it
produces interpretable artifacts (i.e., not online or deep-learning based), it is more amenable
to refining its performance, auditing its outputs, and building it into a larger system.

For due diligence, we repeat and extend the evaluation of prior work, now comparing
the performance of the lCCAs generated by R+ (not Remy) to the performance obtained
by parameter-tuning popular CCAs (TCP Vegas, Cubic, BBR) and a deep reinforcement
learning (DRL)-based CCA [21]. Our results presented in Appendix A.3 show that R+
consistently matches or outperforms the best performance obtained by parameter-tuning
TCP Vegas, Cubic, and BBR. Similarly, our experiments with a DRL CCA [21] found that
it produced worse-performing algorithms than our R+ outputs (A.4).

Perhaps most importantly, we repeated a sample of our experiments from §5 using the
best DRL-based CCAs generated by the above and found that the high-level conclusions and
findings that we report with R+ remained the same; i.e., although the absolute performance
values differ, the overall trends (or lack thereof) remain unchanged. Thus we believe that
our findings based on R+ are representative of a high-performing CCA.

There are many known limitations to Remy [3, 40], including its ability to generalize
to scenarios outside of its training configuration. Fortunately, these limitations are not of



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:7

concern for our use case since we only care to evaluate how well a CCA uses a signal set S

for a specific network scenario N , rather than how generalizable the CCA is for a different
network scenario N ′. We address these limitations and other related work further in §8.

Finally, we note that our overall methodology is agnostic to how lCCA is generated. As
better options emerge for producing lCCA, or requirements change (e.g., no requirement for
interpretability), we hope our work provides a blueprint for how these options can be used
to answer fundamental questions such as evaluating signals.

4 Evaluation Setup

We present the experimental setup for the three main factors in our evaluation: the range
of network scenarios (N), utilities (Pu), and signals (S) that we consider. In each case, we
discuss the parameter space in general and then present the specific parameter values we
experimented with. Finally, we elaborate on relevant aspects of how we configure R+ and
ns-3 for generating and evaluating lCCAs. Notably, for N , Pu, S, and other parts of the
experimental setup, we attempt to select a reasonable initial value. However, we hope that
our framework will be used to explore more configurations, topologies, etc. in future work.

4.1 Network Scenarios
We primarily trained (and evaluated) on network configurations pulled from [43] as a starting
point that reproduces prior work. Our only modifications were to change their unit of time
to reflect a datacenter environment, and adapting certain parameters (e.g., RTT, rate) to
have a range of values instead of constants. The parameters that describe a network scenario
are shown in the second column of Table 1. We see that these parameters characterize
both performance characteristics (e.g., RTT, link rate, link loss, buffer size) and the traffic
workload (e.g., via number of senders, and their on and off times).
Parameter settings: The exact parameters used for evaluation are sampled from the space
defined by the configurations in Table 1. For each parameter, there is a min value, a max
value, and a “step” size which determines the granularity of the values between the min
and max. When sampling specific network configurations (or “scenarios”) from the above, a
value for each parameter is randomly selected within the set of values between the min and
max value at the granularity of the step size. Therefore, the number of potential network
scenarios in one of these configurations can be very large (∼ 1.75 million for the default
config). 1 Our results in §5 are generated/evaluated with the default network configuration
in Table 1 unless stated otherwise.

4.2 Utilities
We used the utility function used in [43] due to its fairness properties (proportional throughput
and delay fairness). This utility function is shown in Equation 1. Our only modification is to
add the weights ct and cd to the throughput and delay components.

u = ct ∗ log2(throughput) − cd ∗ log2(delay) (1)

1 We note that R+ uses a unitless value to measure time. While we map this to µs by default, there is no
fundamental reason why this cannot be set to any other value. Instead, it is the relative value of the
parameters based on time that matters.

NINeS 2026



12:8 No Signal to Rule Them All

Config Parameter Min Max Step
default rtt (µs) 20 30 1

rate (pkt/µs) 2 4 0.5
senders 1 16 1

buffer size (pkt) 100 250 25
off time (µs) 100 1500 100
on time (µs) 1000 10000 500
loss (per pkt) 0.001 0.001 0

high senders rtt (µs) 10 20 1
rate (pkt/µs) 2 4 0.5

senders 16 64 2
buffer size (pkts) 1000 1000 0

off time (µs) 1000 1000 0
on length (pkts) 20 10000 100

loss (per pkt) 1 ∗ 10−6 1 ∗ 10−6 0
Table 1 Network configurations used to generate and evaluate lCCAs

Note that, in the above equation, throughput is normalized by the maximum fair-share
throughput a flow can achieve. Similarly, the delay is normalized to ensure both the
throughput and delay values are similar in magnitude [43]. Our added coefficients, ct and
cd, allow us to generalize this utility function to express different goals. We set these to
represent relative prioritization between throughput and per-packet delay.
Parameter settings: In §5, we report results for five utility functions of this form:

Default: ct = cd = 1
2t: ct = 2, cd = 1
2d: cd = 2, ct = 1
100t: ct = 100, cd = 1
100d: ct = 1, cd = 100

Qualitatively, we will refer to 2d and 100d utilities as delay-focused and the 2t and 100t
utilities as throughput-focused. When comparing CCA’s achieved utility, we will refer to it
as their score. Finally, we note that our methodology easily accommodates different utility
functions, so we are not fundamentally limited to the above utilities. We leave the exploration
of additional utilities to future work.

4.3 In-Network Signals
We collect two (base) forms of in-network signals, queue and link data, and try some variations
on these signals. Our baseline queue metric is the queue length at a given hop, and the link
metric is the rolling average utilization of the link in discrete intervals of time. By default,
the time interval for collecting link metrics is 10µs. We perform a sensitivity analysis of the
collection interval and investigate additional signals in §6.3.

When collecting in-network signals at each hop, a natural next question is what aggregation
function to apply along the path (i.e., min/max/avg). With one hop, all aggregation functions
are the same. For general topologies, we assume the min or max of the signal along the path,
picking whichever is appropriate for the signal in question: e.g., maximum queue length or
maximum link utilization at any hop.

To gather in-network signals, data is collected as a packet is sent to the wire and added
to a custom packet header. For example, in our simulations, an 8-byte header containing
two 32-bit fields for link and queue metrics is inserted between the L2 and IP headers. At



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:9

each network hop, this header is updated with the appropriate value (e.g., maximum queue
length) seen along the path.
Parameter settings: In our evaluation, each CCA has a default set of end-to-end (E2E) signals
available to it. We use the baseline signals in Remy as our default set, which includes: an
exponentially-weighted moving average (EWMA) of the sending rate and the receiving rate,
a “slow” EWMA of the receiving rate with a lower weight for new data points, and the ratio
of the latest RTT measurement to the min RTT measurement seen so far. Unless otherwise
specified, all CCAs have access to these default signals. Notably, this default set does not
include loss – we will explore the role of loss signals in §5.1.

Our evaluation considers augmenting the above default E2E signals by in-network queue
and/or link signals. Thus, we have 4 essential options for evaluation:

E2E: only the baseline end-to-end signals
Link: E2E signals + link telemetry signals
Queue: E2E signals + queue telemetry signals
Link + Queue: E2E + link and queue telemetry signals

Note that we do not explicitly model ECN since this is subsumed by our queue length
signal. In general, to answer questions about signal quality, we will compare the relative
performance of CCAs trained with the above signals sets.

4.4 R+ Setup
In generating lCCAs, we run R+ for five training generations, as we found that performance
typically stops improving after this point. The current lCCA is recorded after each generation.

In training, the candidate lCCAs are evaluated repeatedly on a set of 200 simulated
network scenarios. The network model in Remy, parameterized by the variables in Table 1,
is necessarily simple to allow for tractable evaluation of many candidate algorithms. In this
model, all senders reside on a single host directly connected to the receiver. Accordingly, all
flows compete on exactly one shared link. The parameters of this link are defined by the
particular sampled network scenario: rate, delay, buffer size, and stochastic loss rate (buffer
overflow will also result in loss but is not configurable). Similarly, the specified number of
senders turn off/on for durations determined by sampling from an exponential distribution
with the scenario-specified mean.

4.5 ns-3 Setup
Once R+ has completed training, the lCCAs from each generation are evaluated in the ns-3
simulator. This evaluation is run on 200 network configurations randomly selected from the
original training set, with 10 simulations per configuration to ensure reliable results. The
CCA with the highest score is selected as our final lCCA for the given (N, S, Pu).

By default, we simulate a topology similar to the model used in training: a single-
bottleneck dumbbell topology, with the host link rates and latencies set to have no significant
impact on the results (Figure 2a). All other parameters match the network configuration
sampled from the space defined for training (e.g., bottleneck rate, latency, senders, etc.).

To test how well the results generalize to other topologies, we also evaluate on a “line
topology” as pictured in Figure 2b with each sender on one half of the topology sending
to one receiver on the other side. As with the dumbbell, all parameters are set to match
the configuration of the given network scenario. We chose this topology to serve as a
generalization of the dumbbell topology while remaining true to the network configurations
with which each CCA has trained. We can vary the number of hosts connected to each router

NINeS 2026



12:10 No Signal to Rule Them All

H1

H2

E3
R1 R2

E4

H3

H4

E1

E2

(a) Dumbbell topology with 2 senders and optional
reverse path flows.

H1

R1

H2

R2

H3

R3

H4

R4

E1 E2 E3 E4

(b) Line topology with 1 host / router, 2 senders, and
optional extra flows.

Figure 2 Topologies used to evaluate the produced CCAs. All host links are set to 1 Tbps rate,
0 ms latency, and 10,000 pkt buffers to avoid influencing results. Flows are designated with arrows
(dotted for extra flows to create multiple bottlenecks or reverse path congestion).

between the base case of a dumbbell topology and the other extreme with only one host
connected to each router.

While these two topologies are quite simple, we use the line topology and additional
flows to capture important variations over the training scenario: multiple hops, different
bottlenecks between competing flows, and reverse-path congestion. On the line topology,
we can optionally enable additional flows to test our CCAs under multiple bottlenecks. In
this version, there is an additional flow crossing each individual router-router link which
only intersects the other traffic for one hop. This allows each sender to have a potentially
different bottleneck, depending on which of the extra senders are running at a given time (as
shown to be an important use of INT in [42]). Similarly, as shown in Figure 2a, reverse-path
senders can be enabled on the dumbbell topology.

Finally, we note that accurately simulating lCCAs required making a few modifications to
ns-3 to enable correct timestamping and fine-grained pacing at the sender. These modifications
are described in more detail in §A.2.

5 Results

We now present the results from using our framework to analyze the value of INT signals. The
results show that for average case utility (score), the value is minimal. However, analyzing
individual network scenarios and other performance metrics reveals the merits of INT and
the specific strengths of each signal type.

Figure 3 shows the utility score averaged across all evaluated network scenarios, for
different signal set options. The error bars indicate the standard deviation in scores which
we found to be small (≤ 5%). We observed a similar trend for our 100t and 100d utilities
and hence omit them from the figure due to space considerations.

We see two trends from Figure 3: (1) for a given utility, there is no significant difference
between CCAs that use INT signals and those that use only E2E signals, and (2) for a given
utility, the average score varies very little across different INT signal sets (Link, Queue, Link
+ Queue). We found these results surprising and hence investigate each in §5.1 and §5.2
respectively.

5.1 INT and End-to-End Signals
Early work on leveraging ECN demonstrated substantial performance gains over loss-based
CCAs [35, 5, 17, 16, 44] and hence it is (arguably) somewhat surprising that INT-based
CCAs do not generally dominate E2E ones in Figure 3. Recall, however, that our E2E
CCA in this figure uses a richer set of E2E signals - RTT, send rate, and receive rate.



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:11

0

2

4

default 2t 2d
Utility

Sc
or

e
E2E Link Queue Link + Queue

Figure 3 Utility score aver-
aged across all network scenarios
evaluated for default, 2d, and 2t
utilities and all main signal sets.

0

1

2

3

E2E No
RTT

No
Rec.
Rate

No
Send
Rate

Loss Loss
+
INT

Loss
+

RTT
Signals

Sc
or
e

Figure 4 Default utility av-
eraged across all network scen-
arios for signal sets with fewer
signals than the baseline (E2E).

0.00

0.25

0.50

0.75

1.00

−3 −1 0 1
Score Difference / Max Error

C
D

F

Signals
Link
Queue
Link + Queue

Figure 5 Distribution of
score difference significance,
s(score), between each singal
set and E2E for default utility.

Hence, one hypothesis is that one or more of these richer signals enable better performance
than traditional loss signals, effectively “closing the gap” between E2E and INT-based
CCAs. To test this conjecture, we repeated our evaluation with different options for E2E
signals, including systematically removing one signal at a time from our default E2E set,
and considering loss as a signal both individually and with other signals. Our results are
shown in Figure 4.

We see that the scores remained essentially the same even as we removed specific signals
from our default E2E set. This is shown with the bars labeled “No RTT”, “No Receive Rate”
and “No Send Rate” in Figure 4, each of which removes the named signal from the E2E
signal set. We see that these trained CCAs – despite having access to only two of the E2E
signals – were able to reach the same overall utility.2

Figure 4 also shows that a CCA that uses only packet loss as its signal (like NewReno,
Cubic) produced significantly lower utility. In contrast, an algorithm that (in addition to
loss) is given access to RTT or INT signals was able to achieve performance comparable to
those using a full set of signals. This suggests that when measured by average performance,
nearly any set of signals can be effective, provided they are more proactive than packet loss
alone and the algorithm’s control loop is optimized for them. To better understand this
result, we further breakdown CCA performance in the rest of this section and find that, while
this is true in the common case, INT signals can provide value in some network scenarios.

From Average to Specific Network Scenarios All signal sets may seem to perform similarly
due to the effect of averaging across all network scenarios within the considered space (defined
in Table 1). While two CCAs may have similar average performance, there may be specific
network scenarios in which the difference in performance is significant (i.e., larger than the
error for the given network).

In order to analyze these differences more closely, we look at the full distribution of
performance across all network scenarios evaluated. To determine the significance of any
difference, we normalize to the maximum error of the two CCAs being compared. More
precisely, we calculate s(p), our significance value for performance metric p between signals
sets a and b, as

2 We found that training the version with no RTT signal, required a minor change to the exact form of
the sending and receiving rate signals. In this case, we normalized all rates to the receiving rate so that
Remy did not have to create a rule for all possible relationships between sending and receiving rate. We
also required 8 generations of training (vs. 5 earlier) for the score to stabilize. We experimented with
this modification for other signal sets, but saw no significant change in utility.

NINeS 2026



12:12 No Signal to Rule Them All

0.00

0.25

0.50

0.75

1.00

−5 −10 1 2 5 10 20
Score Difference / Max Error

C
D

F Utility
default
2t
2d
100t
100d

Figure 6 Distribution of
score difference significance
between the Link + Queue and
E2E signal sets for all utilities.

0.00

0.25

0.50

0.75

1.00

0.01 0.1 1 10 100
Score Difference (% E2E Score)

C
D

F Utility
default
2t
2d
100t
100d

Figure 7 Distribution of
score differences between the
Link + Queue and E2E signal
sets normalized to E2E score
for all utilities.

0

25

50

75

100

0 25 50 75 100
% Primary Metric Better

%
 S

ec
on

da
ry

 
M

et
ric

 B
et

te
r

Utility
2t
2d

100t
100d

Signals
Link
Queue
Link + Queue

Figure 8 Percent of network
scenarios with significantly bet-
ter primary metrics compared
to E2E for all non-default util-
ities.

sa,b
i (p) = pa

i − pb
i

max(e(pa
i ), e(pb

i ))
(2)

where px
i and e(px

i ) are the performance metric and its error for the signal set x on
network scenario i, respectively. We plot the distribution of s(score) in Figure 5 for the
default utility, showing s(score) for each INT signal option computed relative to our E2E
signals. I.e., in Figure 5, a from Eqn. 2 is one of Link, Queue, or Link+Queue, and b is the
E2E signal set. We consider a score difference si insignificant if it lies in the range (-1,1).

As shown in the figure, for the majority of network scenarios, the performance difference
between having any INT signal and none is insignificant (i.e., −1 < si < 1). However, there
are up to ∼11% of network scenarios where the performance gap is significant for the default
utility function.

Figure 6 extends this analysis to our other utility functions. We plot the distribution of
si between the Link + Queue and E2E CCAs for all utilities. We observed similar results
with Link and Queue individually but omit them for clarity. As before, we observe that
for many utilities the number of scenarios with significant differences is relatively low (e.g.,
2d, 100t) but we also see that large differences can be common for some extreme utilities
(e.g., 100d). Closer examination reveals that while the difference in scores is large relative to
the error (denominator in Eqn. 2), this difference is often small relative to the score itself.
We see this in Figure 7 which plots the distribution of the same score differences but now
normalized to the E2E score (vs. the error). We see that, in almost all utilities, no difference
is greater than 10% of the E2E score (100t is the only exception). Thus, even though there
may be a large number of significant differences, these differences can be small enough that
the average remains within average error (as seen in Figure 3).

Our results above align with prior work on INT-based CCAs which demonstrates that
INT signals are particularly helpful in especially difficult scenarios; e.g., to disambiguate
bottleneck delay from end-to-end delay when there are multiple bottlenecks [42]. Given
the extensive research on optimizing performance in extreme network conditions [29, 38, 5,
25, 7], understanding these differences can be particularly important for network operators
supporting demanding applications. In addition, operators may want to understand the
implications of operating in a specific scenario (e.g., level of demand, buffer size). Thus, we
aim to determine both how these signals can improve performance and in what situations
they are most valuable.



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:13

Bottleneck
Rate

Buffer Size
Load

Off Time
On Time

RTT
Senders

−0.2 −0.1 0.0 0.1 0.2
Correlation

Pa
ra

m
et

er

Signals
Link
Queue

(a) Default utility.

Bottleneck
Rate

Buffer Size
Load

Off Time
On Time

RTT
Senders

−0.25 0.00 0.25 0.50
Correlation

Pa
ra

m
et

er

(b) 2t utility.

Figure 9 Correlation between s(score) and network parameters. A large positive (negative)
value indicates the that the given signal set tended to outperform the E2E CCA as the parameter
increases (decreases). Smaller magnitude correlations indicate that the network parameter was not
a significant factor in the score differences.

How : Breaking Down Utility Further analysis of the individual components of the overall
score (throughput and delay) revealed more about why these results arise. Figure 8 shows
the percentage of network scenarios for which the signal set outperforms the baseline in the
“primary” and “secondary” metrics (i.e., s(tput) > 1 and s(delay) < −1 where the primary
metric is the one with the larger coefficient in the utility function). As shown in the figure,
INT signal sets generally outperform the E2E signal set in the secondary metric, rather
than the primary. And, this difference is larger in the utilities with the most significant
score differences (e.g., 2t and 100d in Figure 6). These results suggest that INT is better at
balancing the primary and secondary metrics than E2E which may often have to sacrifice the
secondary metric in order to maximize its utility overall.

When INT Matters To understand the differences shown in Figure 6 more deeply, we look
at which network scenarios result in significant performance gaps. Specifically, we measure
the correlation of the score significance, s(score), with the parameters of the evaluated
network scenario. The calculated values for Link and Queue are shown in Figure 9a for
default utility and Figure 9b provides an example for non-default utility. As an example,
Figure 9a indicates that Queue tended to significantly outperform the E2E signals when
there were few senders (relatively large negative correlation between s(score) and the number
of senders), while Link did better with more senders.

Using this analysis across utilities, we found some consistent patterns. INT signal sets
helped with throughput-focused utilities when the off time for flows was low (i.e., the number
of flows is usually close to maximum). For delay-focused utilities, INT helped with low
load (i.e., senders per unit bandwidth) and low numbers of senders. These cases reflect the
strengths in Figure 8 as INT helped achieve higher throughput in less-loaded scenarios for
delay-focused utilities and helped with delay for throughput-focused utilities by handling the
instability of many flows.

This appears to be the benefit of the “global” nature of INT: i.e., an INT signal captures
router or link state in its entirety while traditional E2E signals like RTT measurements
can only reflect the experience of a specific flow at a router/link. As an example, under
high load, if a flow arrives during a period of congestion, it may measure an inflated RTT
for its minimum RTT. A CCA with a queue metric, however, will be able to tell that this
min RTT measurement is not the true minimum. Similarly, a low-load scenario may be
hard to distinguish from a higher-contention setup in a good steady state without more
global information (i.e., the RTT may be close to the min RTT in either case, though the
link may be underutilized under low load). More global knowledge like this may help the

NINeS 2026



12:14 No Signal to Rule Them All

Utility Better Score
Link Queue

default 4.5% 0.5%
2t 0% 1.5%
2d 0.5% 1.5%

100t 3% 6.5%
100d 28.5% 8.5%

Table 2 Percentage of network scenarios
with significant score differences between Link
and Queue CCAs.

0

25

50

75

100

0 25 50 75 100
% Delay Better

%
 T

pu
t B

et
te

r Signals
Link
Queue

Utility
default
2t
2d

100t
100d

Figure 10 Percentage of significant through-
put and delay differences (|s(p)| > 1) between
Link and Queue CCAs for all utilities.

INT-based CCAs generalize better across loads (as the gap between local information and
global widens).

As shown in Figure 9, however, the two individual INT signals sometimes have different
strengths (e.g., number of senders). We explore these differences next in §5.2.

In sum, while the E2E CCAs achieve the same utility in the average case as all other
signal sets, there are many scenarios in which their limitations result in worse performance
particularly for non-prioritized metrics. Further, as we discuss later and in the Appendix,
E2E CCAs generalize to some scenarios poorly (§6) and often have the worst fairness (§A.6).

5.2 Analysis of INT Signals

We now analyze each individual INT signal in order to determine why they perform similarly
in the average case. This analysis takes similar form to the comparison of E2E and INT:
we consider both the individual performance metrics and individual network scenarios that
produce significant differences.

Finding Differences Table 2 summarizes the number of significant utility differences between
Link and Queue signals (|sLink, Queue(score)| > 1) for all utilities. Note that we are now
comparing one INT signal against another (versus comparing against E2E as we were doing in
the previous subsection). As seen in the table, there are some significant differences, especially
in the more extreme utilities. As before, these differences, while significant, are generally
small – i.e., less than 10% of either CCA’s score (except for 100d which has differences up to
∼20%). Thus, as with E2E, the differences are both infrequent enough and small enough to
average out.

How : Throughput / Delay Tradeoffs We now look at the individual components of our
utility functions to determine if each INT signal achieves its overall utility differently. The
percentage of network scenarios for which |s(p)| > 1 between Link and Queue across utilities
is shown in Figure 10. The Link CCAs generally achieve better delay in more scenarios,
while Queue CCAs achieve better throughput in more scenarios (though the percentage is
much smaller). Further, Link outperforms most in delay when throughput is the primary
metric (2t and 100t), but the gap reduces when both versions are forced to prioritize delay
(2d and 100d). In the score distributions, these differences often do not amount to much of a
difference, especially when the metric is not emphasized (e.g., Link outperforms Queue in
∼88% of the delay distribution when the utility function is 100t but this has minimal-to-no
impact on the overall score).



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:15

When: Strengths by Scenario We now consider the network scenarios in which one signal
performs better than another. With non-default utilities, Link and Queue tend to help in
the same kind of network scenarios (as in Figure 9b) indicating that these scenarios are more
about the weakness of E2E than the individual signals. Under default utility (Figure 9a),
however, there are some notable differences. For example, Link does well with long lived flows
(correlated positively with on time) while Queue does worse. Similarly, we see that Queue’s
performance is negatively correlated with the number of senders while Link is positively.
More concretely, we found that in the top 10% of senders, Link had a significantly better
score than E2E in 15% of cases (vs. 8% for Queue), while Queue had a better score in 27%
of cases in the bottom 10% of senders (vs. 0% for Link). In both extremes, the signal set
with better delay is the signal set that performs better overall (the throughput differences
are generally more insignificant).

Intuition Without a queue metric to accompany it, a CCA with only link metrics is unable
to accurately perceive the degree of overload it may be causing. Thus, it must keep the link
utilization near but below 100% in order to avoid queueing that may impact the score if
large enough. This may lead to the tradeoff we see where Link achieves better delay but
worse throughput than Queue in many cases. However, as mentioned above, under low load
and default utility, Link often has significantly worse delay than Queue, indicating that it
may adopt a different strategy in these regimes that sacrifices some extra delay for better
throughput (to avoid severe underutilization with low load).

As we will explore in §6.2, in settings with significantly more senders, this naive approach
of trying to under-utilize the bottleneck to avoid delay can work poorly.

Queue metrics, on the other hand, allow the sender to ensure that the bottleneck link
is fully utilized (queue > 0), but are unable to perceive the extent of under-utilization.
Hence, they tend to maintain a queue (and therefore some delay) in order to achieve higher
utilization, but are able to bound this queueing delay caused by high utilization better than
CCAs that do not have access to queue information. Further, this approach generalizes
well to low load: senders should increase rate until a small queue is built instead of leaving
throughput on the table (or having to significantly sacrifice delay in order to achieve high
throughput).

Both Link and Queue Signals Naturally, as we have seen link and queue INT to provide
different strengths, having access to both generally lands somewhere in between. Again, this
is more apparent with more extreme utilities. Inspection of the full distribution shows that
for many network scenarios the performance gaps, particularly for the non-prioritized metric,
are significant. For example, the Link + Queue CCA achieves significantly better delay than
Queue in 91% of scenarios for 2t utility, while it achieves significantly better throughput
than Link in 11% of scenarios for 2d utility (with an insignificant difference in 88%). As
before, these differences do not always amount to a significant utility difference: e.g., Link +
Queue only achieves a significant difference over Queue in 7% of 2t utility scenarios despite
the large number of significant delay differences. Lastly, we find that Link + Queue CCAs
generally achieve significant utility differences over E2E in similar scenarios to when Link or
Queue perform well.

Summary In summary, different signals navigate the trade-off between maximizing through-
put and minimizing delay in distinct ways. Algorithms using link metrics excel at minimizing
delay by keeping the link just below 100% utilization, a strategy particularly effective with

NINeS 2026



12:16 No Signal to Rule Them All

Dumbbell Multi−bottleneck Multi−hop

default 2t 2d default 2t 2d default 2t 2d
0

2

4

Utility

Sc
or

e
Signals E2E Link Queue Link + Queue

Figure 11 Average scores for different signal sets and utility functions across different topologies.

a sufficient load/number of senders. Conversely, algorithms using queue metrics are better
at maximizing throughput by maintaining a small queue to ensure the link is fully utilized,
which is advantageous in low-load conditions. Combining both link and queue signals provides
the best balance, achieving better throughput than link-only versions and better delay than
queue-only versions.

Each of these results presented was based on our default network configuration. Thus,
we consider a different network configuration in §6.2. Similarly, we address several variants
of INT signals in §6.3. See the Appendices for details on methodology and a discussion of
issues beyond end-to-end performance.

6 Robustness

6.1 Topological Variations
Recall that our first result was that on average, over all network scenarios, all sets of signals
performed equivalently. We now explore if this result applies to a wider range of network
topologies and competing traffic.

Multi-hop Topologies We evaluated the CCAs (trained on the single-bottleneck network
model) on the line topology shown in Figure 2b with one host connected to each switch. We
find that, as with the original topology, there is no significant difference in the overall utility.
As shown in Figure 11, the average scores are within error of one another, though lower than
they are on the dumbbell topology. Closer inspection of the distribution of score differences
revealed few significant differences between the CCAs with INT vs. E2E signals (especially
as the error for all signals, but notably E2E, increased). Thus, our basic result holds for
these multi-hop topologies.

Multi-bottleneck Topologies Similarly, we evaluate our generated CCAs on a multiple hop
topology with additional senders placed in order to have different bottlenecks for different
flows (as shown in Figure 11). Here, we again see that the overall takeaways of previous
results remain the same.

Reverse Path Congestion Lastly, we consider an alternate setup with congestion on the
reverse path of our evaluated CCAs (as shown in Figure 2a). Here, we set the reverse path
to have twice the number of senders and generate sustained congestion.

There is an additional relevant and potentially significant difference in this setup: one-way
signals. In our baseline setup, the INT signal is collected at every hop along the entire
two-way path; i.e., forward and reverse path. An alernate option is one-way INT signals as
discussed in [36]. Here, the signals are “locked” at the receiver and reported to back to the



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:17

0.00

0.25

0.50

0.75

1.00

−1 0 1 3 5
Score Difference / Max Error

C
D

F Signals
Link
Queue
Link + Queue
E2E − Oneway

(a) One-way signals.

0.00

0.25

0.50

0.75

1.00

−3 −1 0 1 3 5
Score Difference / Max Error

C
D

F

Signals
Link
Queue
Link + Queue

(b) Two-way signals.

Figure 12 Distribution of significant score differences against baseline E2E signals (which are
two-way by default) for all signal sets with reverse path congestion.

sender, without editing on the reverse path. In our experiments so far, since there was no
reverse-path traffic, the difference between one-way and two-way signals was insignificant.
Now we evaluate the potential impact of reverse-path traffic.

The results with locked INT signals are shown in Figure 12a. Notably, INT signals
perform significantly better in many cases in this regime. However, this may only be due
to the fact that the signals are unidirectional and not the inherent value of the particular
signals. Accordingly, we also test the E2E signal set with access to one-way delay.3 As
shown in Figure 12a, this performs slightly better than the (one-way) INT-based signals and
reveals that having one-way signals may be valuable, regardless of the exact signal. More
generally, this finding suggests that some of the value of INT signals may be from features like
unidirectionality (or sub-RTT signaling as in [7]) rather than the metric’s unique importance.

We now consider a case where all signals are two-way. With two-way signals, INT
signals are now updated on the reverse path. As shown in Figure 12b, this setup results in
an increased number of scenarios with significant score differences relative to the baseline
evaluations with no reverse path congestion. We attribute this increase to the cumulative
nature of delay. While INT signals record a non-cumulative, min/max per-hop value, the
E2E delay signal is cumulative. Therefore, delay from congestion on the reverse path will
compound, potentially making the overall congestion seem worse to an E2E algorithm than
to an INT-based one. However, despite these cases, the INT signal sets once again show
mostly similar average scores to the E2E signal set.

6.2 Other Network Configurations
We also trained and evaluated different signal sets on the “high senders” network configuration
shown in Table 1. The main differences between this configuration and the default configura-
tion are the number of competing senders and their on-off pattern. In this configuration, we
use “byte-switched” senders which have a certain number of packets they must send each
time they turn on rather than an amount of time during which they must send data. This
ensures that flow sizes are not a function of the available bandwidth. More importantly, the
number of senders has 4x the maximum value of the default config.

As with the default network configuration, all overall score averages are within error of
one another – i.e., INT does not provide a score difference on average, and all INT signals
are similar on average. However, as shown in Table 3, Link achieves worse delay for similar

3 This is, of course, a non-trivial signal to achieve in a real deployment. We use this test in simulation to
evaluate whether, if possible, a one-way version of E2E signals could achieve the same performance as
one-way INT signals.

NINeS 2026



12:18 No Signal to Rule Them All

Metric Link + Queue Link Queue
Better Worse Better Worse Better Worse

Utility 32.5% 9% 21.5% 39% 59% 0%
Tput 82.5% 0% 77.5% 0% 72% 0%
Delay 0.5% 84.5% 0% 96.5% 3% 78%

Table 3 Comparison of different INT signals against the E2E set for the “high senders” config
(Table 1). Each cell contains the percent of scenarios in which the given signal performed significantly
better or worse than E2E (|s(p)| > 1).

throughput to all other INT versions. All INT versions generally see worse delay than E2E
(as it sacrifices throughput to keep delay low), though Link is the worst. Notably, this is in
contrast to its previous strength against Queue (§5.2).

Upon further inspection of results, the Link version has a significantly worse score than
the other versions when there is a high number of senders: e.g., Link has a significantly worse
score than E2E in 75% of scenarios in the top 10% of senders. While the Queue version does
sometimes get less throughput than the Link CCA, it is able to effectively mitigate the delay,
even in high contention scenarios. This result demonstrates that sensitivity to the degree
of congestion can be critical. In the default setup, naively running close but under 100%
utilization was an effective strategy, but with the instability of more senders, the Link CCA
cannot as effectively prevent queueing delay. By having access to both metrics, the Link +
Queue CCA is able to better balance the two metrics.

6.3 INT Variations
We now analyze a few variations of the INT signals to determine the impact (if any) on the
relative value of the signals. These variations are important as switch vendors may need to
ensure that the metrics they expose are the most useful form for CCA developers.

Available Capacity vs. Utilization While we use percent utilization as our link signal by
default, we tested another form of the link signal: available link capacity (AC) measured in
bps. We chose this as an alternative since it contains more information about the actual link
capacity than utilization. Therefore, a sender may be able to reason more precisely about
how quickly to send data by understanding exactly how much bandwidth is available.

Yet again, in the overall score, the two options perform essentially equally well. There are
however, many network scenarios in which the two versions perform significantly differently
(up to ∼ 35%, depending on the utility). As shown in Figure 13, utilization-based link metrics
generally led to better throughput, while AC generally led to better delay. Further, we found
that AC versions generally perform better than utilization versions in network scenarios with
high load and senders, while performing worse than the utilization versions under low load.

Intuitively, these relative strengths reflect when the signal has the most information.
In low-load situations, link utilization is a more effective signal for achieving throughput
because it generalizes well across links with different capacities. As a relative percentage, a
low utilization value is a clear instruction for a sender to increase its rate, regardless of the
link’s total speed. In contrast, an absolute value for available capacity is ambiguous without
the context of the link’s maximum capacity, or “ceiling”.

Link Data Collection Interval As mentioned in §4, we set the default time interval over
which utilization metrics were collected to 10µs. To determine the significance of this choice,



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:19

0

25

50

75

100

0 25 50 75 100
% Delay Better

%
 T

pu
t B

et
te

r Signals
Link
Link + Queue

Utility
default
2t
2d

AC
Util

Figure 13 Percentage of significant through-
put and delay differences between AC and
utilization-based versions of link signals.

0.00

0.25

0.50

0.75

1.00

−1 0 1
Score Difference / Max Error

C
D

F

Signals
Link
Link + Queue

Figure 14 Significant score differences
between baseline versions and 10x collection in-
terval versions.

we increased the value to 100µs and trained CCAs with access to link signals. This change
had no clearly significant impact on the score of either the Link or Link + Queue CCAs on
average. As shown in Figure 14, the longer interval did significantly decrease the achieved
utility in some cases for Link. These cases largely had low on times and high off times,
indicating that the longer collection interval hurt performance when flows are short and
sparse. In these cases, the longer window results effectively averages the utilization over a
longer time, making the signal less accurate. Notably, this effect did not seem to matter
when a Queue metric was also available (only 2% of cases had significant differences for Link
+ Queue). While we increased the collection interval by 10x, further increases may see more
dramatic impact. We leave this to future investigations.

Smoothing We found that details of how metrics are smoothed into an INT signal matter.
For example, with queue length metrics, simply running them through our default EWMA
proved to be a poor choice, resulting in significantly lower average utility. The impact of
a transient queue would persist for long after the queue had drained leading the CCA to
be unnecessarily conservative. However, an EWMA proves to be the right choice for link
metrics. We provide additional detail in Appendix A.5.1.

7 BBR Evaluation

In order to confirm that our finding – namely that INT signals do not provide much value in
the average case – was not simply an artifact of our methodology, we modified an existing
CCA to use INT signals. The selection of CCA was important since we should not change
the control loop logic of the CCA (which may improve the performance regardless of the
quality of the signal, and could make the CCA arguably just a different algorithm altogether).
Thus, we chose BBR [11]4 since it has a clear goal state that is independent of the signals
used to achieve this state. However, we also performed similar experiments with DCTCP
in A.7. As mentioned in [11], BBR is designed to (1) keep a BDP of packets in flight and
(2) send at the bottleneck rate. At a high level, it does this by probing for bandwidth and
RTT estimates, which requires purposely sending above/below the current estimate of the
bottleneck rate.

BBR implements this with four states: PROBE_BW, PROBE_RTT, STARTUP, and
DRAIN. It is designed to spend ∼ 98% of time in the PROBE_BW phase [11]. Accordingly,

4 We note that we specifically used BBRv1 as a starting point since it is a simpler protocol and is readily
available for ns-3.

NINeS 2026



12:20 No Signal to Rule Them All

0.00

0.25

0.50

0.75

1.00

−10.0 −7.5 −5.0 −2.5 0.0
Delay Difference / Max Error

C
D

F

Version
BBR' Link
BBR' Queue
BBR' Link + Queue
BBR' RTT

0.00

0.25

0.50

0.75

1.00

−1 0 1
Throughput Difference / Max Error

C
D

F

Figure 15 Significant throughput and delay differences between BBR’ using different signals and
baseline BBR.

we modified the conditions for changing the pacing rate in the PROBE_BW phase. In
PROBE_BW, the pacing rate is set above the estimated bottleneck rate, then below, then
maintains the estimated rate. The phase of the pacing rate is determined partially by time
spent in the phase, as well as some exit conditions (such as incurring loss). For example, the
high rate phase is exited once the minimum time has passed and either bytes have been lost
or more than a BDP is inflight.

These checks presented a natural place to add INT signals. We added to the conditions
to change gain phases (i.e., not modifying existing conditions). Specifically, required that
utilization be above 90% to exit the high-rate phase and that queueing be less than 5 packets
to exit the low-rate phase as an initial implementation; we arrived at these values after some
experimentation. We also tested changes to the transitions between states, but found almost
all changes to have no noticeable impact. The only transition change that did result in
noticeable performance changes was exiting the PROBE_BW phase, where we add conditions
to exit if the queue length is greater than 0 or the link utilization is greater than 95%.

As shown in Figure 15, these changes, denoted generally as BBR’, resulted in essentially
no change in throughput performance, but a drastic improvement in the delay achieved.5
Although this may initially seem to indicate that the INT signals were necessary to produce
this result, we made similar changes to the exit conditions based on the observed RTT
instead (i.e., exit high rate if the RTT crosses some threshold indicating queueing, exit low
rate when it gets below a threshold, exit PROBE_BW if above some threshold). As shown
in Figure 15, we are able to achieve nearly the exact same results with RTT, a traditional
end-to-end signal. This indicates that the improvement was based on an algorithmic change,
rather than the virtue of the signals themselves, aligning with our results that nearly “any
signal will do” in the average case.

These results are also robust to more complex topologies and scenarios. The same
modifications to BBR on a line topology with extra flows to create multiple bottlenecks
produced largely the same behavior. All BBR’ versions had significantly better delay in
∼ 50% of scenarios (vs. ∼ 75% on a dumbbell topology).

We also compare these results to our findings about the relative strengths of each individual
INT signal. Using these signals in our BBR modification requires fine-tuning thresholds. As
we manually experimented with trying to tune these thresholds for throughput or delay, our
experience mirrored the tradeoffs found in §5. The best-performing version for each signal
and each metric are shown in Table 4. These results, while necessarily anecdotal from a
manual optimization process and notably small in performance, reiterate the strengths of
the signals: Queue can achieve high throughput with a bounded but necessary sacrifice in

5 From our evaluations, this improvement in delay comes at the cost of some fairness. Further evalu-
ation/design may determine the correct tradeoff between the two and if fairness is a necessary concession.



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:21

Signal Optimized For Best Config Delay Tput
Link Throughput H=95%, L=90% 1.65 0.90

Queue Throughput H=10, L=0 1.53 0.93
Link Delay H=90%, L=85% 1.52 0.88

Queue Delay H=2.5, L=0 1.53 0.91
Table 4 Best performing BBR’ configuration for each signal determined by the median value of

the metric (normalized to best possible). H and L denote the threshold for the signal to exit the
high rate and low rate phases, respectively.

delay, while Link can achieve low delay, but at the cost of some throughput. Overall, the
signals must sacrifice the metric they observe more directly in order to optimize the other.

Our experience with applying INT signals to BBR supports our finding that nearly any
signal could be sufficient in the average case. Of course, we cannot guarantee that a better
use of the INT signals does not exist, but our best efforts did not result in any performance
gain that was unique to INT signals. Further, this demonstrates that these findings may be
true even when the utility function is different than our default form and the CCA is not
optimized for the given setting. However, we note that other benefits of a particular signal
such as understandability may be important for a CCA designer when not using a lCCA.

8 Related Work

To the best of our knowledge, we are the only work which specifically tries to answer which
in-network signals are the most useful to a generic CCA. There is, however, a significant body
of work both in congestion control algorithms which use some form of in-network support
[18, 22, 15, 7, 5, 49, 6, 44] and those that specifically use the type of INT signals we target
[29, 42]. These approaches use a variety of different signals (link bandwidth, per-hop delay,
etc.) and reasonably justify these choices. Further, while their goals may be similar, this can
result in very different designs (e.g., TIMELY [31] and pFabric [6] both cite minimizing FCT
as their goals). However, none of these works systematically address the question of what
signals would be best for their (or other) goals.

While these proposed CCAs often build their own infrastructure for collecting in-network
signals, [36, 1, 26] propose formats for carrying this data in packet headers. In particular,
[36] proposes a general and extensible method for collecting any in-network signals for CCAs.

Meanwhile, the growing interest in these signals builds on a large body of work on
in-network telemetry ([50, 19, 30, 28, 27, 48, 33] as a sample). Often this work focuses on
collecting metrics for out-of-band analysis and therefore operates on timescales that are not
appropriate for congestion control or are not available on a per-path basis. However, the
underlying methods for efficiently collecting data at the switch are critical to the per-packet
metrics used for CCAs.

There is plenty of existing work in the space of answering general questions about what is
possible in congestion control design [47, 9, 8, 12, 39, 24, 4]. These works use very different
methodologies (analysis and theorem-proving) than we proposed and accordingly provide
quite general insights for their chosen settings/problems. However, most of these works do
not aim to answer questions about the quality of the signals available to a CCA. Notably, [4]
aims, in part, to determine the signals and other components of a CCA sufficient to achieve
a desired property, but is limited to single-flow scenarios and end-to-end signals due to its
network model. Further, it primarily focuses on worst-case scenarios rather than average
case analysis. We adopt an optimization-based approach to achieve our desired generality

NINeS 2026



12:22 No Signal to Rule Them All

properties (independence from the specific control loop) rather than using analysis for both
a more descriptive network model and visibility into the full distribution of performance.

We chose Remy [43] as the basis for our CCA generator due to a few desirable properties:
(1) there is a significant amount of work available on its capabilities and limitations [43, 45,
40, 3], (2) it produces interpretable CCAs generated in an offline setting, and (3) it can
be easily extended/refined. In contrast, some other CCAs which seek to optimize a utility
function often perform their exploration online [13, 14], providing no insights across uses for
us to analyze. Similarly, many ML-based CCAs may achieve better performance in some
cases [21, 45] but employ learning schemes (e.g., DRL) that do not produce an interpretable
artifact. Despite this limitation, we experimented with [21] in §A.4 and found it to perform
both worse and more inconsistently than R+ in our setting. In addition, some other works
combine various methods of learning with existing CCAs to achieve high adaptability to
many scenarios [3, 46, 34], but this is not a priority for our methodology (determining the
best set of signals for a given set of scenarios).

9 Limitations

The design space our work addressed is infinite, so this paper is not intended to make
definitive declarations about in-network signals, but instead is offered as a modest first step
in identifying the question of which INT signals are best and proposing a methodology to
answer it. Here we outline ways in which our preliminary investigation was limited, and how
those limitations could be addressed in future work.

We only trained our CCAs on a few network configurations. Broadening the range of
these configurations might lead to new findings, such as perhaps one set of signals generalizes
better across a wide range of network conditions than others. In addition, there are many
variations of signals that we did not address (e.g., number of flows, different aggregation
functions), and perhaps one of these will prove superior to the signals we investigated.

Similarly, we generated CCAs for five different utility functions of the same general form.
There exist many other valid forms of utility for which one may want to learn which signals
perform best (e.g., message completion time). Likewise, one may be particularly interested
in the tail of per-flow performance, rather than the average. While not explored in this
work, our framework can accommodate these alternative objectives. Further, we do not
evaluate our CCAs in scenarios where they compete with CCAs generated with different
utility functions - i.e., we did not have competing utility functions. A model with multiple
utilities would more accurately capture the differing goals of flows on real networks, so work
in this area could be useful to demonstrate the robustness of the results.

We evaluated our generated CCAs on a few simple topologies and traffic matrices,
attempting to extract some important and difficult scenarios for these CCAs. However,
the design space here is vast as well. Extensions to evaluate larger topologies (such as a
full datacenter network), other difficult scenarios (e.g., incast), and transports with other
capabilities (e.g., receiver-driven CCAs [32, 18]) all merit additional investigation if of
particular interest to a given network operator.

While we use R+ to produce our lCCAs and achieve independence from any particular
control loop, this approach relies on R+’s training algorithm being a good search methodology.
We believe it is a reasonable approach and show that it at least produces significantly better
optimization than a naive form of parameter tuning or other learning-based approaches
(Appendices A.3 & A.4). We recognize that there are likely other reasonable approaches to
optimizing congestion control algorithms and we encourage exploration of the design space.



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:23

References

1 In-band network telemetry (INT) dataplane specification, 2020. https://p4.org/p4-spec/
docs/INT_v2_1.pdf.

2 NS-3, 2025. https://www.nsnam.org/.
3 Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao. Classic meets modern: a pragmatic

learning-based congestion control for the internet. In Proceedings of the Annual Conference of
the ACM Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM ’20, page 632–647, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3387514.3405892.

4 Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben Martins, and Srinivasan Seshan. To-
wards provably performant congestion control. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24), pages 951–978, Santa Clara, CA, April 2024.
USENIX Association. URL: https://www.usenix.org/conference/nsdi24/presentation/
agarwal-anup.

5 Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel,
Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center tcp (dctcp). In
Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM ’10, page 63–74, New York,
NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1851182.1851192.

6 Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown, Balaji
Prabhakar, and Scott Shenker. pfabric: minimal near-optimal datacenter transport. In
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, page
435–446, New York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/
2486001.2486031.

7 Serhat Arslan, Yuliang Li, Gautam Kumar, and Nandita Dukkipati. Bolt: Sub-RTT congestion
control for Ultra-Low latency. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 219–236, Boston, MA, April 2023. USENIX Association.
URL: https://www.usenix.org/conference/nsdi23/presentation/arslan.

8 Venkat Arun, Mohammad Alizadeh, and Hari Balakrishnan. Starvation in end-to-end con-
gestion control. In Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM
’22, page 177–192, New York, NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3544216.3544223.

9 Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad Alizadeh, and Hari
Balakrishnan. Toward formally verifying congestion control behavior. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 1–16, New York, NY, USA,
2021. Association for Computing Machinery. doi:10.1145/3452296.3472912.

10 Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. Tcp vegas. ACM SIGCOMM
Computer Communication Review, 24:24–35, 10 1994. URL: https://dl.acm.org/doi/10.
1145/190809.190317, doi:10.1145/190809.190317.

11 Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson.
Bbr: Congestion-based congestion control. Communications of the ACM, 60:58–66, 2017.
doi:10.1145/3009824.

12 Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. Computer Networks and ISDN Systems, 17(1):1–14, 1989.
URL: https://www.sciencedirect.com/science/article/pii/0169755289900196, doi:10.
1016/0169-7552(89)90019-6.

13 Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael Schapira. PCC: Re-
architecting congestion control for consistent high performance. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), pages 395–408, Oakland,
CA, May 2015. USENIX Association. URL: https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/dong.

NINeS 2026

https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://www.nsnam.org/
https://doi.org/10.1145/3387514.3405892
https://www.usenix.org/conference/nsdi24/presentation/agarwal-anup
https://www.usenix.org/conference/nsdi24/presentation/agarwal-anup
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1145/2486001.2486031
https://www.usenix.org/conference/nsdi23/presentation/arslan
https://doi.org/10.1145/3544216.3544223
https://doi.org/10.1145/3452296.3472912
https://dl.acm.org/doi/10.1145/190809.190317
https://dl.acm.org/doi/10.1145/190809.190317
https://doi.org/10.1145/190809.190317
https://doi.org/10.1145/3009824
https://www.sciencedirect.com/science/article/pii/0169755289900196
https://doi.org/10.1016/0169-7552(89)90019-6
https://doi.org/10.1016/0169-7552(89)90019-6
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/dong
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/dong


12:24 No Signal to Rule Them All

14 Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and
Michael Schapira. PCC vivace: Online-Learning congestion control. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18), pages 343–356, Renton,
WA, April 2018. USENIX Association. URL: https://www.usenix.org/conference/nsdi18/
presentation/dong.

15 Nandita Dukkipati and Nick McKeown. Why flow-completion time is the right metric for
congestion control. ACM SIGCOMM Computer Communication Review, 36:59–62, 1 2006. URL:
https://dl.acm.org/doi/10.1145/1111322.1111336, doi:10.1145/1111322.1111336.

16 Gorry Fairhurst and Michael Welzl. The Benefits of Using Explicit Congestion Noti-
fication (ECN). Internet-Draft draft-ietf-aqm-ecn-benefits-08, Internet Engineering Task
Force, November 2015. Work in Progress. URL: https://datatracker.ietf.org/doc/
draft-ietf-aqm-ecn-benefits/08/.

17 Sally Floyd. Tcp and explicit congestion notification. SIGCOMM Comput. Commun. Rev.,
24(5):8–23, October 1994. doi:10.1145/205511.205512.

18 Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W. Moore, Gianni
Antichi, and Marcin Wójcik. Re-architecting datacenter networks and stacks for low latency
and high performance. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, page 29–42, New York, NY, USA, 2017. Association
for Computing Machinery. doi:10.1145/3098822.3098825.

19 Qun Huang, Haifeng Sun, Patrick P. C. Lee, Wei Bai, Feng Zhu, and Yungang Bao. Omnimon:
Re-architecting network telemetry with resource efficiency and full accuracy. In Proceedings of
the Annual Conference of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer Communication, SIG-
COMM ’20, page 404–421, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3387514.3405877.

20 V. Jacobson. Congestion avoidance and control. In Symposium Proceedings on Communications
Architectures and Protocols, SIGCOMM ’88, page 314–329, New York, NY, USA, 1988.
Association for Computing Machinery. doi:10.1145/52324.52356.

21 Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar. A deep
reinforcement learning perspective on internet congestion control. In International Conference
on Machine Learning, pages 3050–3059. PMLR, 2019.

22 Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high bandwidth-
delay product networks. In Proceedings of the 2002 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIGCOMM ’02, page 89–102, New
York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/633025.633035.

23 Frank P Kelly, Aman K Maulloo, and David Kim Hong Tan. Rate control for communication
networks: shadow prices, proportional fairness and stability. Journal of the Operational
Research society, 49:237–252, 1998.

24 Srinivasan Keshav. A control-theoretic approach to flow control. In Proceedings of the
Conference on Communications Architecture &amp; Protocols, SIGCOMM ’91, page 3–15, New
York, NY, USA, 1991. Association for Computing Machinery. doi:10.1145/115992.115995.

25 Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian Wu, Behnam
Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld, Michael Ryan, David
Wetherall, and Amin Vahdat. Swift: Delay is simple and effective for congestion control
in the datacenter. In Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’20, page 514–528, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3387514.3406591.

26 Jai Kumar, Surendra Anubolu, John Lemon, Rajeev Manur, Hugh Holbrook, Anoop Ghanwani,
Dezhong Cai, Heidi Ou, Yizhou Li, and Xiaojun Wang. Inband Flow Analyzer. Internet-Draft
draft-kumar-ippm-ifa-07, Internet Engineering Task Force, September 2023. Work in Progress.
URL: https://datatracker.ietf.org/doc/draft-kumar-ippm-ifa/07/.

https://www.usenix.org/conference/nsdi18/presentation/dong
https://www.usenix.org/conference/nsdi18/presentation/dong
https://dl.acm.org/doi/10.1145/1111322.1111336
https://doi.org/10.1145/1111322.1111336
https://datatracker.ietf.org/doc/draft-ietf-aqm-ecn-benefits/08/
https://datatracker.ietf.org/doc/draft-ietf-aqm-ecn-benefits/08/
https://doi.org/10.1145/205511.205512
https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1145/3387514.3405877
https://doi.org/10.1145/52324.52356
https://doi.org/10.1145/633025.633035
https://doi.org/10.1145/115992.115995
https://doi.org/10.1145/3387514.3406591
https://datatracker.ietf.org/doc/draft-kumar-ippm-ifa/07/


S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:25

27 Jonatan Langlet, Ran Ben Basat, Gabriele Oliaro, Michael Mitzenmacher, Minlan Yu, and
Gianni Antichi. Direct telemetry access. In Proceedings of the ACM SIGCOMM 2023
Conference, ACM SIGCOMM ’23, page 832–849, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3603269.3604827.

28 Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. FlowRadar: A better NetFlow for
data centers. In 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), pages 311–324, Santa Clara, CA, March 2016. USENIX Association. URL: https:
//www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang.

29 Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang, Zheng
Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. Hpcc: high precision
congestion control. In Proceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 44–58, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3341302.3342085.

30 Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braverman.
One sketch to rule them all: Rethinking network flow monitoring with univmon. In Proceedings
of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, page 101–114, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2934872.2934906.

31 Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia
Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats. Timely: Rtt-based
congestion control for the datacenter. SIGCOMM Comput. Commun. Rev., 45(4):537–550,
aug 2015. doi:10.1145/2829988.2787510.

32 Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. Homa: a receiver-
driven low-latency transport protocol using network priorities. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’18,
page 221–235, New York, NY, USA, 2018. Association for Computing Machinery. doi:
10.1145/3230543.3230564.

33 Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, and Peter Steenkiste. SketchLib:
Enabling efficient sketch-based monitoring on programmable switches. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22), pages 743–759,
Renton, WA, April 2022. USENIX Association. URL: https://www.usenix.org/conference/
nsdi22/presentation/namkung.

34 Lorenzo Pappone, Alessio Sacco, and Flavio Esposito. Mutant: Learning congestion control
from existing protocols via online reinforcement learning. In 22nd USENIX Symposium on
Networked Systems Design and Implementation (NSDI 25), pages 1507–1522, Philadelphia,
PA, April 2025. USENIX Association. URL: https://www.usenix.org/conference/nsdi25/
presentation/pappone.

35 K. K. Ramakrishnan and Raj Jain. A binary feedback scheme for congestion avoidance
in computer networks with a connectionless network layer. In Symposium Proceedings on
Communications Architectures and Protocols, SIGCOMM ’88, page 303–313, New York, NY,
USA, 1988. Association for Computing Machinery. doi:10.1145/52324.52355.

36 Abhiram Ravi, Nandita Dukkipati, Naoshad Mehta, and Jai Kumar. Congestion Signaling
(CSIG). Internet-Draft draft-ravi-ippm-csig-00, Internet Engineering Task Force, August 2023.
Work in Progress. URL: https://datatracker.ietf.org/doc/draft-ravi-ippm-csig/00/.

37 Injong Rhee, Lisong Xu, Sangtae Ha, Alexander Zimmermann, Lars Eggert, and Richard
Scheffenegger. CUBIC for Fast Long-Distance Networks. RFC 8312, February 2018. URL:
https://www.rfc-editor.org/info/rfc8312, doi:10.17487/RFC8312.

38 Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad Sharif, Rong Pan, Mostafa Ammar, Ellen
Zegura, Keon Jang, Mohammad Alizadeh, Abdul Kabbani, and Amin Vahdat. Annulus: A dual
congestion control loop for datacenter and wan traffic aggregates. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM ’20,

NINeS 2026

https://doi.org/10.1145/3603269.3604827
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/2829988.2787510
https://doi.org/10.1145/3230543.3230564
https://doi.org/10.1145/3230543.3230564
https://www.usenix.org/conference/nsdi22/presentation/namkung
https://www.usenix.org/conference/nsdi22/presentation/namkung
https://www.usenix.org/conference/nsdi25/presentation/pappone
https://www.usenix.org/conference/nsdi25/presentation/pappone
https://doi.org/10.1145/52324.52355
https://datatracker.ietf.org/doc/draft-ravi-ippm-csig/00/
https://www.rfc-editor.org/info/rfc8312
https://doi.org/10.17487/RFC8312


12:26 No Signal to Rule Them All

page 735–749, New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3387514.3405899.

39 S. Shenker. A theoretical analysis of feedback flow control. In Proceedings of the ACM
Symposium on Communications Architectures & Protocols, SIGCOMM ’90, page 156–165, New
York, NY, USA, 1990. Association for Computing Machinery. doi:10.1145/99508.99547.

40 Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Balakrishnan. An exper-
imental study of the learnability of congestion control. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, page 479–490, New York, NY, USA, 2014. Associ-
ation for Computing Machinery. doi:10.1145/2619239.2626324.

41 W. Richard Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms. RFC 2001, January 1997. URL: https://www.rfc-editor.org/info/
rfc2001, doi:10.17487/RFC2001.

42 Weitao Wang, Masoud Moshref, Yuliang Li, Gautam Kumar, T. S. Eugene Ng, Neal Cardwell,
and Nandita Dukkipati. Poseidon: Efficient, robust, and practical datacenter CC via deployable
INT. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI
23), pages 255–274, Boston, MA, April 2023. USENIX Association. URL: https://www.
usenix.org/conference/nsdi23/presentation/wang-weitao.

43 Keith Winstein and Hari Balakrishnan. Tcp ex machina: computer-generated congestion
control. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM
’13, page 123–134, New York, NY, USA, 2013. Association for Computing Machinery. doi:
10.1145/2486001.2486020.

44 Yong Xia, Lakshminarayanan Subramanian, Ion Stoica, and Shivkumar Kalyanaraman. One
more bit is enough. In Proceedings of the 2005 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIGCOMM ’05, page 37–48, New
York, NY, USA, 2005. Association for Computing Machinery. doi:10.1145/1080091.1080098.

45 Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Levis,
and Keith Winstein. Pantheon: the training ground for internet congestion-control research.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 731–743, Boston,
MA, July 2018. USENIX Association. URL: https://www.usenix.org/conference/atc18/
presentation/yan-francis.

46 Chen-Yu Yen, Soheil Abbasloo, and H. Jonathan Chao. Computers can learn from the heuristic
designs and master internet congestion control. In Proceedings of the ACM SIGCOMM 2023
Conference, ACM SIGCOMM ’23, page 255–274, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3603269.3604838.

47 Doron Zarchy, Radhika Mittal, Michael Schapira, and Scott Shenker. Axiomatizing congestion
control. Proc. ACM Meas. Anal. Comput. Syst., 3(2), June 2019. doi:10.1145/3341617.
3326148.

48 Yang Zhou, Ying Zhang, Minlan Yu, Guangyu Wang, Dexter Cao, Eric Sung, and Starsky Wong.
Evolvable network telemetry at facebook. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 961–975, Renton, WA, April 2022. USENIX
Association. URL: https://www.usenix.org/conference/nsdi22/presentation/zhou.

49 Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn, Yehonatan
Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and Ming Zhang. Congestion
control for large-scale rdma deployments. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIGCOMM ’15, page 523–536, New York,
NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2785956.2787484.

50 Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan, Dave
Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and Haitao Zheng. Packet-level telemetry in
large datacenter networks. In Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM ’15, page 479–491, New York, NY, USA, 2015.
Association for Computing Machinery. doi:10.1145/2785956.2787483.

https://doi.org/10.1145/3387514.3405899
https://doi.org/10.1145/3387514.3405899
https://doi.org/10.1145/99508.99547
https://doi.org/10.1145/2619239.2626324
https://www.rfc-editor.org/info/rfc2001
https://www.rfc-editor.org/info/rfc2001
https://doi.org/10.17487/RFC2001
https://www.usenix.org/conference/nsdi23/presentation/wang-weitao
https://www.usenix.org/conference/nsdi23/presentation/wang-weitao
https://doi.org/10.1145/2486001.2486020
https://doi.org/10.1145/2486001.2486020
https://doi.org/10.1145/1080091.1080098
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://doi.org/10.1145/3603269.3604838
https://doi.org/10.1145/3341617.3326148
https://doi.org/10.1145/3341617.3326148
https://www.usenix.org/conference/nsdi22/presentation/zhou
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/2785956.2787483


S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:27

A Appendix

A.1 Remy Overview
At a high level, Remy works in the following way. In each generation, a random sample
of networks within the parameters of a provided configuration is collected. The current
rules (starting from one default rule in the first generation) are run on the sample to get a
benchmark score and determine the most-commonly used rule. That rule is then improved
(by trying other candidate actions and choosing the best-performing one) repeatedly until no
further improvements are observed. This process is performed on all rules 5 times, and the
generation is then complete. For each rule, information about how many times it was used
and the exact signal values for each use are recorded. At the end of a generation, if there
has not been a regression since the last generation, the most commonly used rule is bisected
along each dimension at the median value of that signal from every recorded use. Once it is
bisected, the next generation can begin. See [43] for more specific details.

A.2 Modification Details
As mentioned in §3, changes to the component systems in our methodology were necessary.

A.2.1 Remy Modifications (R+)
We modify Remy primarily by (1) increasing the network configuration sample size, (2)
adding in-network signal support, and (3) modifying the action types. The default sample
size in [43] is 16 networks, but we found that > 50 were needed for consistent results (we
used 200 in our evaluations). Adding in-network signals (2) was primarily achieved by adding
additional fields to the packets. In the Remy model, there is a single bottleneck, so the
queue length and the recent link utilization are simply added as the packet is put on the
wire. Lastly, we found that we needed to modify the action types to get better/consistent
performance (3).

Specifically, in its default form, RemyCC rules map signal space to actions in the form of
a cwnd multiplier, a value to add to the cwnd, and the pacing rate. We found that setting
the pacing rate directly was problematic. Rules that were less commonly-used and covered
a large space of signals were not served well with a single pacing rate. As an example, a
rule that covers a signals space in which the sending rate and the receiving rate ranges are
roughly equal (indicating no congestion), but large (covering receiving rates in a wide range),
one cannot set a sending rate that will be optimal for all scenarios covered by this rule.
Senders with sending/receiving rates near the upper bound of the range of the rule will be
better served with a faster pacing rate than those at the other extreme. In response to this,
we modified Remy so that the pacing rate is a function of the current delivery rate. This
resulted in a large increase in performance for network configs which used such rules, and
therefore cause an overall increase.

The performance difference between the results from default Remy and R+ are shown
in Figure 16 for default utility and E2E signals. The gains relative to default Remy for (1)
adding just the additional training scenarios and (2) also changing the rate to be a function
of delivery rate are shown (R+). As shown in the figure, adding more training scenarios
dramatically increased (up to 56%) the performance in many scenarios, while decreasing it
in others. This is expected as the baseline form of Remy would overfit to the scenarios it did
train on, doing particularly well in those at the cost of others. While not in the figure, we
found that this change was critical to seeing consistent performance across generations. With

NINeS 2026



12:28 No Signal to Rule Them All

0.00

0.25

0.50

0.75

1.00

−50 0 50 100 150 200
Score Increase (%)

C
D

F
More Scenarios
More Scenarios + Rate Function (R+)

Figure 16 Distribution of performance improvement (% score increase) from Remy to R+ for the
E2E signal set under default utility.

the generalization of the sending rate as a function of the receiving rate (“Rate Function”
in the figure), no scenarios result in worse performance than baseline Remy and over 10%
improve by over 50%. Again, this difference can be attributed to the generated CCA not
having to choose some subset of scenarios to excel in, and it can instead optimize over the
entire training space.

A.2.2 ns-3 Modifications
In order to get RemyCCs to work in ns-3, we had to make a few modifications to the default
TCP socket in ns-3. In particular, our three major modifications were to (1) turn on the
timestamp option and increase its resolution from ms to µs, (2) change how the pacing rate
is updated, and (3) add hooks to clear state. Since Remy trains its CCAs on a very simple
network model (with very high-specificity timestamps), the RTT measurements used by
default in a TCP socket were too inaccurate and smoothed too much to be useful to the
RemyCCs. Accordingly, we implemented high-specificity timestamps (1) and exclusively used
these for the RTT measurements used by the RemyCC. We believe such timestamps are not
impractical as recent work has implemented systems which gather precise delay measurements
[25]. Similarly, another discrepancy exists in the pacing rates. Remy implements its pacing
by ensuring that when a packet is ready to be sent that enough time has passed since the last
send according to the current pacing rate. ns-3 sockets, however, use timers which are set to
wait 1

rate time to send again when a packet is sent. Accordingly, changes to the pacing rate
made between packet sends will not have impact until the next packet is sent (causing the
flow to wait much longer than the RemyCC intended based on its training). To resolve this,
we simply recalculate the time left on the pacing timer when the pacing rate is changed (2).
Lastly, Remy trains its CCAs on exponentially distributed flow lengths where each sender
samples for on and off times. This is similar to the On/Off Application in ns-3, but does
not retain socket state. Accordingly, we added hooks to the TCP socket to notify it that it
should clear the Remy state (3).

A.3 Validation

A.3.1 Approach
Before relying on Remy/R+’s algorithm, we confirm that the CCAs produced by R+ do more
to optimize performance than simply parameter tuning on a traditional CCA. This endeavor
serves as a confirmation that R+ is a reasonable attempt at performance tuning CCAs, and



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:29

CCA Parameter Default Min Max Granularity
Vegas alpha 2 0 15 1

beta 4 1 15 1
gamma 1 1 40 2

BBR high gain 2.89 2.75 3.05 0.05
BW window length 10 4 14 2

rtt window length (s) 10 4 14 2
probe rtt duration (ms) 200 100 350 50

extra acked rtt window length 5 2 8 1
ack epoch acked reset threshold 4098 2048 8142 2048

Cubic beta 0.7 0.5 0.9 0.05
delta (ms) 10 6 14 2

c 0.4 0.2 0.6 0.05
counter clamp 20 10 30 5

Table 5 Parameter search ranges for each congestion control.

in doing so, produces results closer to optimal than simply tuning an existing CCA to a
given network environment. To test this, we search the space of configurable parameters on
a few traditional CCAs in ns-3 and compare the performance to that of a trained lCCA. We
measure performance in the form of the utility function discussed in §4 and compare over
network configurations in the default configuration. Though, for this experiment, we map
the unit of time to ms as this better matches the scenarios for which the reference CCAs
were designed.

We perform two basic searches over the parameter space, depending on the complexity
of the CCA. For TCP Vegas, which has 3 integer parameters: alpha, beta, and gamma
[10], we conduct a linear search over a “reasonable” space around the default configuration.
We perform a similar search for Cubic [37], which has 4 base parameters (ignoring hystart
configuration). BBR, however, has 9 parameters meaning that such a simple search would
require testing x9 variations of BBR, where x is the number of values tried for each parameter.
Instead, we perform a greedy, Remy-like search which tries a small range of variations for
each parameter in each step, moves to the best performing configuration in that set, and
repeats. The exact ranges of parameters tested are shown in Table 5. We refer the reader to
each CCA for more descriptive meanings of each of these parameters.

For each candidate configuration, we sample 50 networks from the network configuration
shown in Table 1 and score the performance of the CCA based on the default utility function
from §4. This process then effectively serves as parameter-tuning the CCA for the best
possible performance in the set of network scenarios specified by the network configuration.

A.3.2 Validation Results
The best configurations and scores for the default-weighted utility are shown in Table 6.
From our search, we found that for Vegas, the default parameters performed quite well and
the best-performing configuration was not drastically different. For BBR, there was room
for improvement in the configuration for the space of possible networks. For Cubic, the
gap in performance from parameter tuning is also noticeable. Meanwhile, a lCCAtrained
for the same utility over the same range of network parameters produces a score that is
significantly higher than the BBR, Vegas, and Cubic scores considering that the utility
function is logarithmic. This experiment demonstrates that R+ does far more to optimize
for the objective than naive parameter tuning to a specific network configuration and its

NINeS 2026



12:30 No Signal to Rule Them All

CCA Parameter Best Conf. Best Score Default Score
Vegas alpha 1 3.1766 3.1512

beta 3
gamma 1

BBR high gain 2.75 1.8764 1.2879
BW window length 14

rtt window length (s) 10
probe rtt duration (ms) 100

extra acked rtt window length 8
ack epoch acked reset threshold 2048

Cubic beta 0.5 2.428 2.2470
delta (ms) 14

c 0.2
counter clamp 20

R+ - 3.34 -
Table 6 Best-performing configuration for each CCA.

0

1

2

3

4

default 2t 2d
Utility

Sc
or

e

Signals
E2E
Link
Queue
Link + Queue

Figure 17 Average scores across utilities and signal sets for PCC-RL [21].

general formulation of CCAs (⟨signals⟩ → ⟨actions⟩) helps in doing so.

A.4 PCC-RL Results

In an attempt to find the best CCA generator for our framework, we also ran experiments
with PCC-RL [21]. All other parameters in our framework remained the same: the signal
sets, utility functions, and network configurations. The only change was the optimizer that
produces the lCCAs. Using [21], we trained models that use our signal sets and result in
changes to the CWND and pacing rate. We then evaluated these models in ns-3 in the same
scenarios that we evaluated the lCCAs from R+.

The results for default, 2d, and 2t utility are shown in Figure 17. Notably, the two
primary results from R+ remain the same: all signal sets perform within average error of
one another. INT signals did not clearly help overall utility and no single signal clearly
outperforms the other. However, in contrast to R+, the error is overall much larger and the
scores are overall lower (e.g., R+ achieves scores around 3.4 for default utility).

In light of these results, we chose to continue with R+ as our optimizer. We believe these
large differences to be due to (1) our modifications to Remy and (2) PCC-RL training with
only one flow (thus making optimizing overall utility more difficult). Perhaps multi-agent RL
approaches could improve PCC-RL’s relative performance, but we leave such investigations
to future work.



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:31

0.00

0.05

0.10

0.15

0.20

default 2t 2d
Utility

Th
ro

ug
hp

ut
 S

td
. D

ev
.

Signal
E2E
Link
Queue
Link + Queue
Link − AC
Link + Queue − AC

Figure 18 Fairness (average standard deviation of normalized competing flow throughput) for all
utilities.

A.5 Result Details

A.5.1 Smoothing
We found that our initial version of our Queue CCAs performed worse than having no
additional in-network signals with delay-focused utilities. In fact, it achieved a statistically
significantly worse utility score than all other CCAs. At this time, our queue (and link)
signal was input into a EWMA at the sender, following in form with most of the other signals
there by default. Upon further inspection, we found that this choice was particularly bad for
performance with queue metrics, as a transient long queue could result in the queue signal at
the host having high values for a significant amount of time (long after the queue has been
drained). This causes the CCA to conflate scenarios which require very different responses
(there was a long queue that is draining/gone vs. there is currently a significant amount of
congestion). As a result, the training process bisects rules in places that are not ideal for
disambiguating scenarios that require different reactions, resulting in lower overall utility. To
ensure this was not a limitation of the specificity of the CCA, we trained it for 8 generations
and observed that it never improved.

We also tested the performance of link metrics without smoothing, and found no significant
difference in the performance. We note that the link signal is inherently smoothed over the
collection interval and the additional smoothing over a few packets may have comparatively
small impact.

This illustrates that not all versions of a signal are equally valuable as some may make
learning more difficult for Remy. Though, as long as the existence / degree of congestion
was possible to determine and accurate to the network, Remy was able to use any signal
provided.

A.6 Additional Results
Methodological Learnings. One of the perhaps most initially surprising learnings from
utilizing this methodology was observing that most performance is achieved in just the first
two generations of training. This essentially means that not much specificity (number of
rules in the CCA) are needed to perform relatively well. Depending on the number of signals
available, a CCA in its 2nd generation will have about 16 - 64 rules (2dims). Intuitively, this
is perhaps consistent with the body of CCA work and the success of hand-crafted CCAs in
general. As an example, formulating TCP New Reno in “rules” would likely only require a
few dimensions (RTOs, dupacks, ssthresh) and a few rules.
Fairness. As mentioned in §4, we chose to keep the form of the utility function used in [43]
in part due to its fairness properties. Since fairness is of interest to operators, we validate
that our CCAs achieve their intended fairness goal. To capture fairness, we measure the

NINeS 2026



12:32 No Signal to Rule Them All

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
Throughput Difference / Max Error

C
D

F

(a) Throughput

0.00

0.25

0.50

0.75

1.00

−1 0 1 2 3 4
Delay Difference / Max Error

C
D

F Version
DCTCP' Link
DCTCP' Queue
DCTCP' Link + Queue
DCTCP' RTT

(b) Delay

Figure 19 Distribution of significant throughput and delay differences between DCTCP’ versions
and baseline DCTCP.

0.00

0.25

0.50

0.75

1.00

−1 0 1
Throughput Difference / Max Error

C
D

F

Version
DCTCP' Link
DCTCP' Queue
DCTCP' Link + Queue
DCTCP' RTT

(a) Throughput

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
Delay Difference / Max Error

C
D

F

(b) Delay

Figure 20 Distribution of significant throughput and delay differences between DCTCP’ versions
and baseline DCTCP on a line topology.

standard deviation in the (normalized) throughput distribution of competing flows. A more
fair CCA will have a value closer to zero. We summarize the fairness of all CCAs with in
Figure 18. For reference, the average throughput per-run error for the CCAs shown was
generally around 0.04. In general, we found that the CCAs with access to no in-network
signals tended to be more unfair in the best-performing generation and Link + Queue CCAs
with available capacity link metrics were often the most fair.

A.7 DCTCP Modifications
Similarly to §7, we attempted to apply our findings to DCTCP [5]. DCTCP uses ECN
bits in order to create an EWMA that estimates the current degree of congestion, α. The
window size is then adjusted based on the value of α. In baseline DCTCP, received bytes
are generally recorded as "experienced congestion" if the ECN bit is set. For this baseline,
we use the guidance for picking the ECN marking threshold in the switches from [5]. In
our experiments with other congestion signals, we only modify the definition of bytes that
experienced congestion. We refer to all versions using different signals than ECN for this
calculation as DCTCP’. Rather than using ECN, we try classifying packets based on thresholds
of INT signals and end-to-end delay. The results are shown in Figure 19. In the figure, we see
that we can achieve similar performance to the baseline algorithm (which uses a simple form
of INT, ECN) with just RTT measurements. Similarly, marking bytes as congested based
on INT does not provide any significant performance benefit. This is perhaps unsurprising
as setting the queue-based threshold to the ECN marking threshold should be effectively
equivalent behavior. Link signals, however, required more careful tuning to achieve the same
performance of the baseline.



S. McClure, N. Dukkipati, S. Ratnasamy and S. Shenker 12:33

Once again, these (manually tuned) results do not attempt to conclusively determine
that INT signals could not have helped the performance of DCTCP, However, these results
do definitively show that in this regime, both INT and RTT can produce effectively the same
performance as ECN.

We ran the same experiments on our line topology with extra senders enabled to create
multiple bottlenecks. The measured throughput and delay are shown in Figure 20. As with
the simpler dumbbell topology, all DCTCP’ are able to achieve the same performance as the
baseline version.

NINeS 2026


	1 Introduction
	2 Approach
	3 Finding lCCA
	3.1 Remy and R+
	3.2 Why Remy (and R+)?

	4 Evaluation Setup
	4.1 Network Scenarios
	4.2 Utilities
	4.3 In-Network Signals
	4.4 R+ Setup
	4.5 ns-3 Setup

	5 Results
	5.1 INT and End-to-End Signals
	5.2 Analysis of INT Signals

	6 Robustness
	6.1 Topological Variations
	6.2 Other Network Configurations
	6.3 INT Variations

	7 BBR Evaluation
	8 Related Work
	9 Limitations
	A Appendix
	A.1 Remy Overview
	A.2 Modification Details
	A.2.1 Remy Modifications (R+)
	A.2.2 ns-3 Modifications

	A.3 Validation
	A.3.1 Approach
	A.3.2 Validation Results

	A.4 PCC-RL Results
	A.5 Result Details
	A.5.1 Smoothing

	A.6 Additional Results
	A.7 DCTCP Modifications


